AudioWorklet: The future of web audio

Hongchan Choi
Google Chrome
hongchan@chromium.org

ABSTRACT

This paper presents a newly introduced extension to the
Web Audio API that enables developers to author custom

audio processing on the web. AudioWorklet brings JavaScript-

based audio processing that is fast, reliable and secure
while addressing numerous problems found in the earlier
ScriptProcessorNode. AudioWorklet’s design is discussed,
followed by technical aspects, usage examples, and what
the new functionality offers to the computer music commu-

nity.

1. BACKGROUND
1.1 What is AudioWorklet?

Since its birth in 2010, the Web Audio API [1] has trans-
formed the web browser into a platform for interactive ap-
plications for music and audio. Although it has been rea-
sonably successful in accommodating various use cases
with its highly dynamic design, there has been a major
criticism pointing out its lack of flexibility and extensi-
bility. Besides built-in features for basic audio processing
and synthesis, the API also provided developers with a way
of running user-supplied JS code through ScriptProcessor-
Node, a provision which failed to meet the expectations of
the developer community. [2]

To address this issue, the W3C Audio Working Group !

started working on a new functionality, named AudioWorklet,

to support sample-accurate audio manipulation in JavaScript
without compromising performance and stability. The ini-
tial design of the AudioWorklet interface was introduced
in an API specification in 2014 and its first operational im-
plementation was released to the public in early 2018 in
the Chrome browser.

AudioWorklet is the most anticipated enhancement in the
history of Web Audio API, however its genesis and advan-
tages have not been fully discussed yet. The goals of this
article are to 1) present a comprehensive comparison be-
tween AudioWorklet and its predecessor, ScriptProcessor-
Node, 2) provide usage examples, 3) discuss technical as-
pects and 4) highlight what this new technology brings to
computer musicians.

! https://www.w3.0rg/2011/audio/

Copyright: ©2018 Hongchan Choi et al. This is an open-access article

distributed under the terms of the Creative Commons Attribution License

3.0 Unported, which permits unrestricted use, distribution, and reproduc-

tion in any medium, provided the original author and source are credited.

1.2 Web Audio API processing model

To appreciate the advantages of AudioWorklet over Script-
ProcessorNode, it is helpful to understand how Web Audio
API operates internally. The following is a quick recap of
the processing model embodied in the API specification.

Browser main thread High priority thread
Control thread Render thread
User script)
Audio graph
code udio grap
i change | update
AudioNodes F+—————— Corlr]r;aend
Asynchronous a
messaging

Figure 1. The processing model of the Web Audio API

Two crucial premises of the Web Audio API rendering
mechanism are that 1) the audio rendering needs to be per-
formed on a dedicated thread with high priority and 2) the
rendering pipeline must have a fixed size render quantum
of 128 frames. The intention behind these prerequisites
is to obtain optimum audio rendering performance out of
generic programming platforms like web browsers.

The Web Audio API needs two threads, the control thread
and the rendering thread. The control thread is the browser’s
main thread where users create and manipulate Web Audio
API objects. This thread is primarily reserved for generic
tasks such as DOM (document object model) processing
and running JavaScript code. The rendering thread is where
the audio engine runs to produce the audio stream. This
separation is necesssary to maintain audio rendering per-
formance. Having a fixed render quantum ensures the ren-
dering process can be much more efficient. Native im-
plementations, for example, can apply different optimiza-
tion techniques such as SIMD and vectorization around the
fixed buffer size.

The interval of the render callback? is designed to be
good enough for high-level user interactions like trigger-
ing musical notes. This interval is, however, too coarse for
sample-accurate audio manipulation of synthesis and mod-
ulation. AudioParam was devised to solve this problem.
One can schedule a parameter automation via the control
thread and, in turn, the sample-accurate audio manipula-
tion will be performed on the rendering thread at a later
time. [3]

Despite AudioParam’s ability to exert finer changes in the

2 Approx. 2.67ms at 48KHz sample rate.

mailto:hongchan@chromium.org
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

audio stream, the API still does not expose a way of run-
ning a user-defined callback function. To address this lack
of flexibility, ScriptProcessorNode was added to the spec-
ification. It quickly gained popularity as a means for ex-
perimentation because the callback function can easily be
written in JavaScript.

ScriptProcessorNode was the answer to the demand for
extensibility from developers wishing to run user script
code within Web Audio API but it was a less than ideal
solution. The feature is now deprecated from the specifi-
cation due to critical design flaws and has been replaced
with AudioWorklet. The following section provides de-
tails on the problems caused by ScriptProcessorNode and
the solutions proposed by AudioWorklet.

2. AUDIOWORKLET VERSUS
SCRIPTPROCESSORNODE

2.1 Clean separation between node and processor

A native AudioNode is comprised of two components: the
user-facing component (the node) and its internal proces-
sor component (the processor). The node is a valid JS
object within the programmable interface (i.e. garbage-
collected) and the processor takes care of the rendering
functionality as a part of the audio graph. This serves two
purposes: 1) to put the node and the processor in the con-
trol and the rendering threads, respectively and 2) to avoid
garbage collection in the rendering thread by detaching the
processor from the node.

Control thread Render thread

ScriptProcessor
Node

Asynchronous
render request

onaudioprocess
callback

AudioNode graph

(render
callback)

Figure 2. ScriptProcessorNode rendering mode

Control thread Render thread
AudioNode graph
Asynchronous
i AudioWorklet
AudioWorklet | _mfs_saE'rP_ Processor
Node (render
callback)

Figure 3. AudioWorkletNode rendering mode

Unlike all other AudioNodes, ScriptProcessorNode does
not have such separation. Both the node and the processor
(i.e., render callback) live on the main thread — and that
has been the root cause of the difficulties. The first order
of business for AudioWorklet was to clear up such a crit-
ical architectural flaw. For this reason, the new design in-
cludes an AudioWorkletNode (node) and an AudioWorklet-
Processor (processor). The AudioWorkletNode lives in the
main scope (i.e., window) and the corresponding Audio-

WorkletProcessor lives in AudioWorkletGlobalScope, a spe-
cial scope for audio rendering purposes.

As mentioned, ScriptProcessorNode’s audio process call-
back was computed in the main thread. This meant that
when the rendering thread signals to the main thread to fill
a buffer in ScriptProcessorNode, the task would be queued
in the task scheduler and the callback function would fire
at a later time. The problem here is the main thread task
queue is usually crowded with various tasks and the
onaudioprocess callback is highly likely to be delayed
in a nondeterministic manner.

By moving the execution of the callback function to the
AudioWorkletGlobalScope (which runs on the rendering
thread), a significant improvement of rendering stability
and performance can be achieved. The main thread also
benefits, because running CPU intensive audio code every
few milliseconds can bring intense pressure to the main
thread and cause UI stuttering and freezing. Scope isola-
tion is a big win for both sides.

2.2 Achieving Synchronous rendering

In Chromium, ScriptProcessorNode implemented the data
exchange between the main thread and the rendering thread
using a double buffering mechanism. However, double
buffering comes with a few problems like latency, audio
dropouts and duplicate. So why did we need it in Chromium’s
implementation? First, because the user-defined callback

function (running in the main thread) is invoked asynchronously

from the audio rendering thread. Second, because the buffer
size of ScriptProcessorNode is not fixed like the render
quantum size of Web Audio API’s rendering engine. Dou-
ble buffering was a relatively simple solution to reconcile
these two conflicts.

Control thread

SPN.onaudioprocess
(render callback)

v Write
| Double buffer |

A Read
Node
processor

SPN
processor
Render thread

Node
processor

Audio graph

Figure 4. ScriptProcessorNode rendering mode

Despite being a convenient workaround, double buffer-
ing can be the source for undesirable side effects. A mutex
is required to avoid race conditions in shared storage be-
tween the two different threads. Also, the timing of read
and write operations are orthogonal. For instance, the main
thread can be stalled while the audio thread keeps read-
ing data out of the buffer and when the read task reaches
the end of storage, the index will go back to the beginning
of the buffer and read old data over again (duplicated au-
dio). Alternatively, if the main thread is holding the buffer

and the audio thread can’t read the data in time, the Script-
ProcessorNode will output a buffer of silence for (a muted
render quantum) heard as an audio dropout.

Control thread

‘ AudioWorkletNode]

A

|
| Asynchronous
| communication

<
Y

AudioWorklet Node
Processor processor

Audio graph

Node
processor

Render thread

Figure 5. AudioWorklet rendering mode

Synchronous rendering is the one of the biggest advan-
tages AudioWorklet offers. It eliminates the issues dis-
cussed above by placing the processing code directly in the
rendering thread. There is no cross-thread function call and
no need for internal buffering. To ensure the optimum per-
formance, the buffer size of AudioWorkletProcessor is now
limited to 128 frames but this rather helps AudioWorklet-
Node operate similar to the native AudioNode. In other
words, AudioWorkletNode is computed as a first-class cit-
izen in the world of Web Audio.

2.3 Extensibility: First-class Object

From the initial review of the Web Audio API by the W3C
TAG (Technical Architecture Group) *, one criticism was
the general lack of extensibility in Web Audio API. [2] Al-
though the API was shaped to provide a set of well-defined
building blocks, there are certain to be use cases that can-
not be addressed by these predefined components. Be-
fore the AudioWorklet, ScriptProcessorNode was the only
thing that could be fully customized, but it was far from
being a first-class object in Web Audio API because of its
different nature e.g., the lack of AudioParam support or a
proper constructor.

Integrating support of AudioParam was required for Audio-
Worklet to become a first-class object in the APL In the
class definition of AudioWorkletProcessor, custom Audio-
Param objects can be declared. The parameter values are
calculated by the rendering engine and they can be directly
accessed in the processor’s callback function.

Extensibility is a key to building a thriving developer com-
munity. Experience has shown that the Web Audio API
failed to provide developers with a proper way of extend-
ing built-in components in a scalable manner. As a result,
numerous experimental projects ended up using Script-
ProcessorNode and are now endangered due to the depre-
cation of the node. For this reason, extensibility was the
most important design goal of AudioWorklet from the be-
ginning; every aspect of its operation (i.e., class definition,
instantiation and processing) can be extended in a way that
is compatible with the built-in AudioNodes which, in fact,
can be implemented with AudioWorkletNode.

3 https://www.w3.0rg/2001/tag/

3. USAGE

The actual usage of AudioWorklet is somewhat involved
compared to ScriptProcessorNode and simple drop-in re-
placement might be difficult. This stems from some of
the differences already outlined including becoming a first-
class object. Also, for programmers who are not familiar
with multi-thread (e.g. WebWorker) programming, its pat-
tern would not be straightforward. This section presents
basic code examples of AudioWorklet with explanations
to help build understanding. *

3.1 Registration and Instantiation

Using AudioWorklet consists of specifying two parts: an
AudioWorkletNode and an AudioWorkletProcessor. This
is more involved than using ScriptProcessorNode, but it
is needed to give developers the low-level capability for
custom audio processing. AudioWorkletNode is the coun-
terpart of AudioWorkletProcessor and takes care of con-
nections to and from other AudioNodes in the audio graph
maintained in the main thread. It is exposed in the main
global scope and functions like a regular AudioNode. Audio-
WorkletProcessor represents the actual audio processor writ-
ten in JavaScript code, and it lives in the AudioWorklet-
GlobalScope.

Here’s a pair of code snippets that demonstrates registra-
tion and instantiation.

// The code in the main global scope.
class MyWorkletNode
extends AudioWorkletNode {
constructor (context) {
super (context, 'my-worklet-processor');
}
}

const context = new AudioContext ();

context.audioWorklet .addModule (
'processors.js') .then(() => {

const node = new MyWorkletNode (context);

)i

Creating an AudioWorkletNode requires at least two things:
a BaseAudioContext object and the processor name as a
string. You can subclass AudioWorkletNode to define a
custom node which will handle the processor running on
the rendering thread. A processor definition is loaded and
registered by AudioWorklet’s addModule () method.

Worklet APIs including AudioWorklet are only available
in a secure context, thus a page using them must be served
over HTTPS, although http://localhost is consid-
ered secure for local testing.

// This is "processor.js" file, evaluated in
letGlobalScope upo

1le ()

in the main

.addMo

// global scope.
class MyWorkletProcessor
extends AudioWorkletProcessor {
constructor () {
super () ;

}

process (inputs, outputs, parameters) {
// Your audio processing code here.

}

4 This tutorial is largely based on AudioWorklet article published at
https://developers.google.com/web/updates/2017/12/audio-worklet.

}

registerProcessor ('my-worklet-processor',
MyWorkletProcessor) ;

The registerProcessor () method in the Audio-
WorkletGlobalScope takes a string for the name of pro-
cessor and the class definition. [4] After the completion
of script code evaluation in the global scope, the promise
from AudioWorklet .addModule () will be resolved
notifying users that the registration is ready to be used in
the main global scope.

3.2 process () callback in AudioWorkletProcessor

The actual audio processing happens in the process ()
callback method in the AudioWorkletProcessor and must
be implemented in the class definition. The rendering en-
gine will invoke this function in an isochronous fashion to
feed inputs and parameters and fetch outputs.

/+ AudioWorkletProcessor.process () method =/
process (inputs, outputs, parameters) {
// The processor may have multiple inputs and
// outputs. Get the first input and output.
const input = inputs[0];
const output = outputs[0];

// Each input or output may have multiple
// channels. Get the first channel.

const inputChannelO = input[0];

const outputChannelO = output[0];

// Get the parameter value array.
const myParamValues = parameters.myParam;

// Simple gain (multiplication) processing

// over a render quantum (128 samples). This

// processor only supports the mono channel.

for (let i = 0; i < inputChannelO.length; ++i) {
outputChannelO[i] =

inputChannelO[i] * myParamValues[i];

}

// To keep this processor alive.
return true;

Additionally, the return value of the process () method
can be used to control the lifetime of AudioWorkletNode
so that developers can manage the memory footprint. To
keep the processor alive, the method must return true. Oth-
erwise, the processor will be garbage collected by the sys-
tem eventually after the node gets collected.

3.3 Custom AudioParam

One of the useful things about AudioNodes is schedulable
parameter automation with AudioParams. AudioWorkletN-
odes can use these to get exposed parameters that can be
controlled at audio rate.

User-defined AudioParams can be declared in an Audio-
WorkletProcessor class definition by setting up AudioParam-
Descriptors. The AudioWorkletGlobalScope will pick up
this information upon the construction of an AudioWorklet-
Node, and will then create AudioParam objects for the
node accordingly.

/+ A separate script file, e.g.
"my-worklet-processor. js" */

AudioWorklet AudioWorklet
Node Processor

upon construction: parameterDescriptors() getter:

node.myParam (name: 'myParam'}

automation:

node.myParam
linearRampToValueAtTime()

process() method:

values = parameters.myParam

Figure 6. AudioParam in AudioWorklet

compute

class MyWorkletProcessor
extends AudioWorkletProcessor
// Static getter to define AudioParam objects
// in this custom processor.
static get parameterDescriptors() {
return [{
name: 'myParam',
defaultValue: 0.707
1
}
constructor () { super(); }
process (inputs, outputs, parameters) {
// |myParamValues| is a Float32Array of
// 128 audio samples calculated by
// WebAudio engine from regular AudioParam
// operations. (i.e. automation methods,
// setter) By default this array would be
// all values of 0.707
const myParamValues = parameters.myParam;

3.4 Bidirectional communication

Sometimes custom AudioWorkletNodes will want to ex-
pose controls that do not map to AudioParam. For exam-
ple, a string-based type attribute could be used to control a
custom filter. For this purpose and beyond, AudioWorklet-
Node and AudioWorkletProcessor are equipped with a Mes-
sagePort for bidirectional communication. Any kind of
custom data can be exchanged through this channel. [5]

AudioWorklet
Node

AudioWorklet
Processor

asynchronous

node.port message passing

processor.port

.onmessage < -

.postMessage()

.postMessage() - - - - - .onmessage

Figure 7. MessagePort in AudioWorklet

MessagePort can be accessed via . port attribute on both
the node and the processor. The node’s
port.postMessage () method sends a message to the
associated processor’s port . onmessage handler and vice
versa.

/# The code in the main global scope. #*/
context.audioWorklet.addModule (
'processors.js') .then(() => {
let node =
new AudioWorkletNode (context,
'port-processor');
node.port.onmessage = (event) => {
// Handling data from the processor.
console.log(event.data.message) ;

Vi

node.port.postMessage ({ message: 'Hello!'});

b i

class PortProcessor
extends AudioWorkletProcessor

/ YT == =] —Ta =57
/% "processor.js" file. x*/

constructor () {
super () ;
this.port.onmessage = (event) => ({
// Handling data from the node.

console.log (event.data.message);
bi

this.port.postMessage ({ message.:'Hi!' });

}

process (inputs, outputs, parameters) {
// Do nothing, producing silent output.
return true;
}

registerProcessor ('port-processor’',
PortProcessor) ;

Also note that MessagePort supports Transferable, which
allows you to transfer data storage or a WebAssembly mod-
ule over the thread boundary. [6] This opens up countless
possibilities on how the AudioWorklet system can be uti-
lized.

4. IN-DEPTH TECHNICAL DISCUSSIONS
4.1 Garbage collection and glitch

In an ideal setting, the real-time audio rendering thread
must not be blocked. Any task that synchronously blocks
the thread execution is a potential threat to the desired glitch-
free audio system. Integrating a JS engine with the We-
bAudio’s rendering engine was a substantial technical chal-
lenge since a JS engine is not really suitable for a real-time
computing system. Even though recent advancements in
the performance of the JS engine have made it possible to
run script code blazingly fast, JavaScript is still a garbage-
collected language and the garbage collection is a thread-
blocking operation.

Garbage collection can stall the rendering task nondeter-
ministically. This is because garbage collection in the JS
engine must not be observable and its timing must not be
deterministic from user’s point of view. For this and other
reasons, memory allocation operations in AudioWorklet-
GlobalScope should be kept to the minimum. Developers
need to keep in mind that declaring arrays and objects, or
receiving cross-thread messages via MessagePort results in
the memory allocation. Any large amount of memory al-
location should be done upfront so to avoid blocking the
audio rendering callback. All in all, it is helpful to gener-
ate less garbage by minimizing the memory allocation and
reusing allocated memory as much as possible.

Despite these inherent difficulties, the AudioWorklet project

successfully harnesses the power of the JS engine for au-
dio processing purposes. Developers have to be careful
to avoid any thread-blocking task in their script code, but
this new paradigm opens up unprecedented possibilities for
web-based audio applications. Improvements which the

AudioWorklet system will leverage include next genera-
tion garbage collection techniques that are under the de-
velopment in modern web browsers (such as generational,
incremental or parallel garbage collection).

4.2 Security: thread priority and SharedArrayBuffer

Being a part of the web platform endows a great deal of
thrilling perks, but it also comes with many constraints that
the computer music has rarely encountered. Among those
handicaps, security is by far the most critical one. A se-
curity breach on the web can have a significant impact on
billions of users thanks to its ubiquitous nature. Any new
feature on the web must undergo rigorous security review
process before it can reach the real-world audience. Need-
less to say, the Web Audio API cannot be an exception for
such validation.

The audio rendering code typically runs on a thread with
real-time priority (although the threading model can vary
across operating systems and certain platforms require ad-
min privilege to use a real-time thread). Unlike native ap-
plications, taking advantage of a real-time thread in the
browser must be dealt with care. The real-time thread
should not execute user-supplied script code. Given the
highest priority, the malicious code can preempt the pro-
cessors (CPUs) and deschedule other tasks on lower prior-
ity threads. This exposes a weakness for certain exploita-
tion techniques, so software architects tend to be very con-
servative on this matter.

In Chromium, the audio rendering thread maintains its
real-time priority unless AudioWorklet system gets acti-
vated. When a user explicitly calls
AudioContext .addModule (), the rendering thread
is replaced with a thread with display priority. Note that the
browser’s main thread runs with the same display priority,
which is the second-tier priority in the browser. Chromium
engineers believed it is reasonable for AudioWorklet to use
a higher priority thread because it helps glitch-free audio
rendering and AudioWorklet is only available within Se-
cureContext® . By comparison, regular priority is given to
general worker threads and this is for a security reason.
WebWorker can run arbitrary user code from a non-secure
domain.

In 2017, SharedArrayBuffer was proposed as a part of
ECMAScript. It enables the parallel processing on the web
in conjunction with WebWorker and MessagePort. Although
the asynchronous message passing can be good enough for
generic tasks between threads, it is not suitable for real-
time audio applications due to the overhead of (de)serialization
and latency from task scheduling.

SharedArrayBuffer is designed to support the high speed
data transfer between two threads, and it is a practical path
for existing audio applications to migrate to the web plat-
form with the minimum effort; the idea is to port native
source code (C/C++) to WebAssembly and run it in the
worker thread. Then the worker generates the audio data
and the AudioWorkletProcessor takes the data to send it to
the audio device. The data transfer between the worker and
the AudioWorkletProcessor is done via SharedArrayBuffer
that behaves like a FIFO or a ring buffer. (See figure 8.)

3 https://www.w3.org/TR/secure-contexts/

Although very promising, Shared ArrayBuffer is currently
disabled by a majority of browser vendors as of February
2018 due to recent security vulnerabilities dubbed Melt-
down and Spectre. [7] [8]

5. THE FUTURE OF WEB AUDIO

At the time of writing, W3C Audio Working Group is fi-
nalizing the working draft of Web Audio API to reach the
Candidate Recommendation phase. Not only was the Audio-
Worklet the last missing piece of Web Audio API V1, but it
will be an apt transition to the second iteration of the APL
It is pure liberation from the developer’s point of view as it
unleashes sample-accurate audio manipulation with Java-
Script and enables porting of much legacy audio software
to the world of the web. This section discusses what the
near future will look like with the introduction of Audio-
Worklet.

5.1 WebAssembly

The rise of WebAssembly ® in 2017 was a pivotal break-
through in the web platform. The idea of high-performance
JavaScript as a compile target was attractive enough to
draw attention of several pioneers in the web audio com-
munity who took it to the next level.

As soon as AudioWorklet API surfaced on the experi-
mental Chromium build, the Faust team started the tran-
sition to the AudioWorklet for their web-based compiler
service. The tool chain compiles a Faust source code into
WebAssembly with a few clicks and produces a fully in-
teractive synth or effect on a web page. [9] Another exam-
ple is Web Audio Module project [10] which demonstrated
the idea of WebAssembly synthesizers by porting existing
source codes. Lastly, the PedalBoard project presented
a playground for effects and synths powered by Audio-
Worklet and WebAssembly by bringing all the pieces from
Faust and Web Audio Module project into one place. [11]

5.2 Influx of legacy projects

Shared ArrayBuffer, though currently disabled by all major
browsers, is expected to be available soon once a proper
security mitigation is in place. When that happens, we
will naturally see more influx of legacy audio software or
framework into the world of web audio.

Reusing code that has been tested and deployed over years
is sensible in most cases, and translating existing audio en-
gines for games (e.g., FMOD, Wwise) or cross-platform
audio SDKs (e.g., Juce, STK) into WebAssembly can be
done with minimal effort compared to a complete rewrite
with JavaScript and Web Audio API. The cost of incom-
patible workflows and programming paradigms has been
an obstacle for translating some of the existing projects,
but SharedArrayBuffer and WebWorker can be the answer
to the problem.

5.3 Ever-evolving web platform

The greatest benefit of being a part of the web platform
is the seamless integration with numerous HTMLS5 APIs.
The platform has been expanding its horizon to bleeding

6 http://webassembly.org/

Main global scope

AudioWorklet WebWorker
Node
I, ‘\
! \
/ Asynchronous
/ m in \
y essaging X
AudioWorkletGlobalScope WorkerGlobalScope
AudioWorkletProcessor
WASM modulg ;
process() (compiled from existing
(render callback) audio engine or SDK)
Read\ / Write
SharedArrayBuffer

Figure 8. AudioWorklet, SharedArrayBuffer and WebWorker

edge technologies like WebXR 7, ServiceWorker ® and Web
MIDI API® while it is perfecting the foundations such as
the network stack, the real-time communication, and the
robust support for multimedia files. Along with such evo-
lution, the gradual improvement in the browser core and
the JS engine makes the web browser a viable destination
for the music software.

The ecosystem around the web platform also shows a
constant growth in its quality and quantity. A dependency
management system like npm '° , and build tools like Web-
pack "', Gulp'?> and Grunt'3 for streamlining workflow
have a strong track record supporting software production
on a massive scale. Also, projects like the headless Chrome
and Puppeteer '* make automated testing and continuous
integration for web-based music applications easy. [12] Con-
sidering that the majority of audio SDK’s are isolated and
incompatible with each other, having a diverse and mature
ecosystem will be a new-found luxury for audio program-
mers.

6. CONCLUSION

Web-based music software is not free from its fair share of
skepticism. The web platform is still fighting an uphill bat-
tle to compete with native alternatives and in a large way
we are pouring considerable effort into solving problems
that are already solved: lower latency, less glitches, multi-
threaded rendering, and so on. We should be willing to
accept the fact that the web platform was not designed for
the computer music but be optimistic in our belief that we
can change the landscape through gradual progress.

What is the meaning of the AudioWorklet to the computer
music community? First of all, it is a new technology for
musical computation which has been meticulously speci-
fied and rigorously reviewed based on the W3C’s process
document. [13] Thanks to W3C Audio Working Group’s

7 https://immersive-web.github.io/webxr/

8 https://www.w3.org/TR/service-workers/

9 http://webaudio.github.io/web-midi-api/

10 https://www.npmjs.com/
11 https://webpack.js.org/
12 https://gulpjs.com/
13 https://gruntjs.com/

14 https://github.com/GoogleChrome/puppeteer

diligence over two years, AudioWorklet is now available to
billions of users. Secondly, it forms a key ingredient that
bridges between legacy music software and the web plat-
form. The computer music can now take advantage of the
rich and diverse ecosystem of the web, while the web plat-
form will be more suited for embracing full-blown audio
applications. To conclude, the AudioWorklet is an open
invitation to the computer music community coming from
the very wide world of the web platform.

Acknowledgments

Special thanks to Chris Wilson, Joshua Bell, Raymond Toy
and Prof. Chris Chafe for their insightful feedback.

7. REFERENCES

[1] W3C Audio Working Group, “Web Audio APL”
https://webaudio.github.io/web-audio-api, 2018, [On-
line; accessed 26-February-2018].

[2] W3C Technical Architecture Group, “Web Audio
API Design Review,” https://github.com/w3ctag/
design-reviews/blob/master/2013/07/WebAudio.md,
2014, [Online; accessed 26-February-2018].

[3] C. Wilson, “A Tale of Two Clocks - Scheduling
Web Audio with Precision,” https://www.htmlSrocks.
com/en/tutorials/audio/scheduling/, 2013, [Online; ac-
cessed 26-February-2018].

[4] TC39, “ECMAScript 2019 Language Specification,”
https://tc39.github.io/fecma262, 2018, [Online; ac-
cessed 26-February-2018].

[5] WHATWG,
saging,’
web-messaging.html#channel-messaging,
[Online; accessed 26-February-2018].

“HTML Standard: Channel mes-
https://html.spec.whatwg.org/multipage/
2018,

[6] Mozilla, “WebAssembly - MDN,” 2018, [Online; ac-
cessed 15-June-2018].

[7] Surma, “Meltdown/Spectre,” https://developers.
google.com/web/updates/2018/02/meltdown-spectre,
2018, [Online; accessed 26-February-2018].

[8] Graz University of Technology, “Meltdown and Spec-
tre,” https://meltdownattack.com, 2017, [Online; ac-
cessed 26-February-2018].

[9] S. Letz and Y. Orlarey, “WebAudio wasm benchmark
pages and tools,” http://faust.grame.fr/news/2017/12/
12/benchmark-tools.html, 2017, [Online; accessed 26-
February-2018].

[10] J. Kleimola and O. Larkin, “Web audio modules,”
Proceedings of the Sound and Music Computing, vol.
2015, 2015.

[11] M. Buffa, M. Demetrio, and N. Azria, “Guitar pedal
board using WebAudio,” Web Audio Conference, vol.
2016, 2016.

[12] E. Bidelman, “Automated testing with Headless
Chrome,” https://developers.google.com/web/updates/
2017/06/headless-karma-mocha-chai, 2017, [Online;
accessed 26-February-2018].

[13] W3C, “World Wide Web Consortium Process Doc-
ument,” https://www.w3.org/2018/Process-20180201/,
2018, [Online; accessed 26-February-2018].

https://webaudio.github.io/web-audio-api
https://github.com/w3ctag/design-reviews/blob/master/2013/07/WebAudio.md
https://github.com/w3ctag/design-reviews/blob/master/2013/07/WebAudio.md
https://www.html5rocks.com/en/tutorials/audio/scheduling/
https://www.html5rocks.com/en/tutorials/audio/scheduling/
https://tc39.github.io/ecma262
https://html.spec.whatwg.org/multipage/web-messaging.html#channel-messaging
https://html.spec.whatwg.org/multipage/web-messaging.html#channel-messaging
https://developers.google.com/web/updates/2018/02/meltdown-spectre
https://developers.google.com/web/updates/2018/02/meltdown-spectre
https://meltdownattack.com
http://faust.grame.fr/news/2017/12/12/benchmark-tools.html
http://faust.grame.fr/news/2017/12/12/benchmark-tools.html
https://developers.google.com/web/updates/2017/06/headless-karma-mocha-chai
https://developers.google.com/web/updates/2017/06/headless-karma-mocha-chai
https://www.w3.org/2018/Process-20180201/

	 1. Background
	1.1 What is AudioWorklet?
	1.2 Web Audio API processing model

	 2. AudioWorklet versus ScriptProcessorNode
	2.1 Clean separation between node and processor
	2.2 Achieving Synchronous rendering
	2.3 Extensibility: First-class Object

	 3. Usage
	3.1 Registration and Instantiation
	3.2 process() callback in AudioWorkletProcessor
	3.3 Custom AudioParam
	3.4 Bidirectional communication

	 4. In-depth technical discussions
	4.1 Garbage collection and glitch
	4.2 Security: thread priority and SharedArrayBuffer

	 5. The future of web audio
	5.1 WebAssembly
	5.2 Influx of legacy projects
	5.3 Ever-evolving web platform

	 6. Conclusion
	 7. References

